
INTRODUCTION 

Low back pain and radiculopathy, attributed to lumbar de-

generative disease, has a historical background spanning over 
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Full-endoscopic spinal fusion surgery has emerged as a crucial approach for managing lumbar 
degenerative spinal disease. A significant concern in endoscopic spinal fusion relates to the vul-
nerability of neural structures, particularly the risk of nerve root injury (NRI). This comprehensive 
review evaluates the critical importance of preserving neurological integrity during endoscopic 
spinal fusion procedures, focusing on multifactorial contributors to risk and effective strategies 
for safeguarding the nerve root. The review thoroughly examines anatomical considerations, 
surgical techniques, the utilization of specialized intraoperative instrumentation, and intraoper-
ative monitoring as key factors influencing the risk of NRI. Understanding these variables is par-
amount for minimizing postoperative neurological complications and improving patient out-
comes. The article succinctly summarizes the clinical presentation of nerve root injuries and 
recommends therapeutic interventions. It also discusses strategies for preventing NRI, empha-
sizing both preoperative considerations and intraoperative measures. This comprehensive review 
provides spine surgeons with valuable insights, highlighting the significance of meticulous 
techniques and preventive measures to optimize patient safety and overall surgical success in 
the context of endoscopic spinal fusion. 
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2 centuries [1]. Surgical intervention, such as posterior decom-

pression with or without lumbar interbody fusion (LIF), be-

comes an option when conservative treatments offer minimal 

relief [2,3]. Reflecting on the historical progression, the concept 
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of formal LIF surgery via the posterior route was initially report-

ed in 1944 by Briggs and Milligan [4] and, the notion of trans-

foraminal access emerged with the first publication in 1982 by 

Harms and Rolinger [5]. During the same era, the anatomical 

structure known as Kambin's triangle was introduced [6]. Over 

the subsequent 2 decades, minimal invasive transforaminal LIF 

(MIS-TLIF) and full-endoscopic transforaminal lumbar inter-

body fusion (Endo-TLIF) have evolved. MIS-TLIF offers advan-

tages such as reduced soft tissue damage, minimized muscle 

retraction, reduced intraoperative blood loss, and shorter hos-

pitalization times compared to open surgery [7]. Endo-TLIF, on 

the other hand, provides superior short-term clinical outcomes, 

faster postoperative recovery, less blood loss, shorter hospital 

stays, and reduced muscle retraction compared to MIS-TLIF, 

with similar long-term clinical outcomes, fusion rates, or com-

plication rates [8-10]. While Endo-TLIF has gained popularity, 

it is not without its challenges, including a steep learning curve, 

extended surgical time, and the risk of nerve root injury (NRI) 

[11,12]. Despite these drawbacks, its excellent clinical outcomes 

have contributed to its increasing use in recent years [13]. 

Currently, 2 common approaches to full-endoscopic lumbar 

fusion surgery are employed: full-endoscopic facet-sparing 

TLIF (FE fs-TLIF) and full-endoscopic facet-resecting TLIF (FE 

fr-TLIF) [14-16]. In FE fs-TLIF, also called KLIF (trans-Kambin 

lumbar interbody fusion) named by Ishihama et al. [14], a 

limited foraminoplasty is performed from the ventral aspect of 

the inferior vertebra’s superior articular process (SAP) to the 

SAP-pedicle junction. A working cannula is then inserted into 

Kambin triangle, defined by the exiting nerve root anteriorly, 

the inferior vertebra's endplate inferiorly, and the facet joint 

posteriorly [17]. Following complete discectomy, the bone graft 

and cage are introduced. Conversely, FE fr-TLIF involves resect-

ing the ipsilateral inferior articular process (IAP) and SAP, with 

the working cannula inserted through an extended Kambin 

triangle. Discectomy is completed, followed by the insertion of 

the bone graft and cage. These 2 approaches share common 

complications associated with endoscopic spinal procedures, 

such as postoperative headache, neck pain, or postoperative 

hematoma [18-20]. However, due to distinct surgical routes, 

FE fs-TLIF is associated with a higher incidence of exiting 

NRI (ENRI), while FE fr-TLIF is linked to increased traversing 

NRI and incidental durotomy compared to FE fs-TLIF [21-

25]. Given the risk of NRI, emphasizing nerve root protection 

is crucial due to potential prolonged hospital stays, increased 

medical costs, and compromised patient-reported outcomes 

[16,19,26,27]. 

Recognizing the significance of nerve root protection, this 

manuscript will provide a narrative review of surgical tech-

niques, operative corridors, incidence rates, clinical manifesta-

tions, management strategies for NRI, and current methods for 

nerve root protection. 

DETAILED SURGICAL TECHNIQUES OF 
FE fs-TLIF AND FE fr-TLIF 

1. Surgical Techniques of FE fs-TLIF 

Anesthesia, comprising general, local, or epidural modalities, 

is administered preoperatively based on established protocols 

[19,28]. Following anesthesia, the patient is positioned prone, 

and precise localization of the target vertebral level is marked. 

Subsequently, a meticulous sterile preparation is executed. 

The surgical incision is situated 40–80 mm lateral to the spinal 

midline depending on the individual anatomical variations 

and surgeon’s preference, with the choice of the side guided by 

the patient's specific clinical symptoms. Following the incision, 

a skillfully placed endoscopic working cannula is introduced, 

with precise fluoroscopic guidance, and accurately positioned 

over the SAP. The ventral aspect of the SAP is fastidiously re-

sected until it reaches the junction with the pedicle, thereby 

completing the foraminoplasty. The working cannula is further 

advanced into Kambin triangle to facilitate the discectomy and 

endplate preparation. Ultimately, after trial testing for size and 

positioning, a cage glider is introduced to establish a secure 

space, culminating in the definitive cage insertion under fluo-

roscopic guidance [15,16,24]. 

2. Surgical Techniques of FE fr-TLIF 

Analogous to FE fs-TLIF, FE fr-TLIF necessitates the admin-

istration of general or epidural anesthesia in the preoperative 

phase. A notable distinction is the infeasibility of conducting 

FE fr-TLIF under local anesthesia [19]. Following anesthesia 

induction, the patient is positioned in a prone orientation using 

a radiolucent spinal operating table. Precise localization of the 

target vertebral level is meticulously executed before surgery. 

After comprehensive sterile preparation, a fluoroscopic-guided 

relocalization is performed immediately before the incision. 

Typically, the incision is made over the lateral pedicle line 

of cranial pedicle, with the choice of the side guided by the 

patient's predominant clinical symptoms. Subsequent to the 

incision, a working channel is inserted and docked onto the 

pars interarticularis of the upper vertebra. Utilizing endoscopic 

visualization, the medial and lateral margins of the IAP are ex-
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posed. Initially, the resection of the ipsilateral IAP is performed, 

either from the spinolaminar junction to the superolateral 

region using an inside-out technique, or vice versa, employing 

an outside-in technique. Subsequently, resection of the ipsilat-

eral SAP of the caudal vertebrae is also performed, extending 

from the junction of SAP and the superior lamina of the inferior 

vertebra to the junction of SAP and the transverse process. The 

working cannula is then advanced into the extended Kambin's 

triangle to facilitate discectomy and endplate preparation. Fi-

nally, a cage glider is introduced to establish a secure quadran-

gular space, and the final cage is inserted following a trial test to 

ensure the appropriate size and positioning under fluoroscopic 

guidance [15,16,24]. 

3. Variations in Surgical Procedures between FE fs-
TLIF and FE fr-TLIF 

Several key distinctions exist in the operative techniques em-

ployed in FE fs-TLIF and FE fr-TLIF. These differences are piv-

otal for clinical decision-making. The primary differentiation 

lies in the choice of anesthesia, as FE fs-TLIF may be conducted 

under local anesthesia, while FE fr-TLIF usually necessitates 

general anesthesia [19]. Furthermore, the location of the skin 

incision in FE fs-TLIF is notably more lateral to the midline 

compared to FE fr-TLIF. In FE fs-TLIF, the expansion of the sur-

gical space involves ventral facetectomy, specifically foramino-

plasty or foraminotomy. In contrast, FE fr-TLIF entails complete 

facetectomy, including the resection of both the IAP and the 

SAP. The surgical access in FE fs-TLIF is denoted as Kambin 

triangle. On the other hand, the surgical corridor in FE fr-TLIF 

is referred to as the extended Kambin triangle, characterized 

by the convergence of Kambin's triangle and the interlaminar 

space (Figure 1) [19]. Lastly, in FE fs-TLIF, nerve decompression 

is achieved primarily through techniques such as disc height 

restoration with interbody fusion and stabilization of dynamic 

instability. In contrast, FE fr-TLIF permits direct decompression 

of neural structures through the removal of hypertrophied liga-

mentum flavum or facet joint spurs. It may even encompass the 

completion of a unilateral laminotomy with bilateral decom-

pression [29]. 

4. The restricted operative corridor of FE fs-TLIF and 
FE fr-TLIF 

According to the existing literature, FE-TLIF is characterized 

as a LIF approach utilizing endoscopic assistance through the 

intervertebral foramen, specifically employing the anatomic 

corridor known as Kambin’s triangle. This triangular space is 

demarcated by the exiting nerve root, facet joint, and the supe-

rior endplate of the inferior vertebrae [6]. In a cadaveric study 

conducted by Min et al., the mean distance from the nerve root 

to the SAP of the inferior vertebrae was found to be 11.6±4.6 

mm, displaying considerable variability. The study underscores 

the importance of executing discectomy procedures under 

direct visualization to avoid blind puncture due to the narrow 

safe zone [30]. Similarly, Hoshide et al. [31]'s cadaveric analysis 

indicated Kambin's triangle length ranging from 10 to 18 mm, 

gradually decreasing from L5 to L1 levels. Nagamatsu et al. 

[17]'s 3-dimensional image analytic study illustrated a gradual 

decrease in the angle of the exiting nerve root to thecal sac from 

L2 to S1. The combination of limited distance from ENR to 

SAP and diminishing nerve root angle exposes the procedure 

to the high risk of direct root stabbing or compression. A ma-

chine-assisted 3D computed tomography/magnetic resonance 

imaging (CT/MRI) fusion imaging study also demonstrated the 

restricted distance from ENR to SAP, ranging from 3.79 to 5.82 

mm, highlighting the vulnerability of the ENR during endo-

scopic surgery [32]. While Kirschner wire and needle insertion 

are relatively safe in the confined anatomical space of Kambin 

triangle, the success rate of a 5-mm dilater passage without 

root irritation only ranges from 8.7% to 50.0% [30,31]. Given the 

heightened risk of nerve root irritation in the restricted natural 

anatomical corridor of the transforaminal approach in endo-

scopic surgery noticed in cadaveric and imaging analysis, there 

is a recognized necessity for a procedure to expand the surgical 

corridor of Kambin’s triangle. This expansion is crucial to en-

hancing the safety and efficacy of FE-TLIF procedures.  

In FE fs-TLIF, a retrospective study reported a high operative 

failure rate of 10.3% when foraminoplasty was absent [33]. 

The finding suggests that the absence of foraminoplasty pose 

challenges in accessing the disc space and limit the space for 

inserting the working cannula, leading to incomplete removal 

of herniated disc material or insufficient nerve decompression 

[34]. Addressing this challenge, Sairyo et al. conducted a cadav-

eric study demonstrating transforaminal ventral facetectomy 

during endoscopic surgery. Postoperative computed tomogra-

phy scans clearly showed an enlarged intervertebral foramen, 

facilitating the safe insertion of a working channel [35,36]. In 

clinical research, the consistent recommendation of foramino-

plasty aims to expand the surgical area by resecting the ventral 

part of the SAP, thereby reducing nerve root irritation [37-41]. 

This evidence underscores the critical role of foraminoplasty in 

FE fs-TLIF, not only in improving the surgical success rate but 

also in ensuring comprehensive disc space access and the safe-
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Figure 1. Graphical Illustration of FE fs-TLIF and FE fr-TLIF. The left portion of the figure illustrates the disparity in surgical inci-
sion sites between FE fs-TLIF and FE fr-TLIF. In FE fs-TLIF, the incision is made 40 to 80 mm lateral to the midline, while in FE fr-
TLIF, it is positioned closer to the midline and precisely over the pedicle site, as confirmed with fluoroscopy. The right portion of 
the figure outlines the surgical routes for FE fs-TLIF and FE fr-TLIF. In FE fs-TLIF, following foraminoplasty, the working cannula is 
inserted into Kambin triangle to facilitate subsequent discectomy. In contrast, in FE fr-TLIF, after complete facetectomy, the sur-
gical corridor of the extended Kambin triangle is accessed, and the working cannula is inserted. The red dotted line delineates the 
area where bony structures are surgically removed during the procedure, while the pink dotted line demarcates Kambin triangle. 
TLIF; transforaminal lumbar interbody fusion; FE fs-TLIF, full-endoscopic facet-sparing TLIF; FE fr-TLIF, full-endoscopic facet-re-
secting; SAP, superior articular process; IAP, inferior articular process.
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ty of exiting nerve root. 

In the evolutionary trajectory of FE fs-TLIF, Jacquot and 

Gastambide [42] reported a frequent postoperative compli-

cation with an incidence of 36% in 2013. This high incidence 

is hypothesized to be related to the limited surgical access of 

Kambin triangle. To overcome these limitations and reduce 

postoperative complications, surgeons adopted FE fr-TLIF. This 

approach involves complete facetectomy, akin to open TLIF 

and minimally invasive TLIF [43,44]. Through complete face-

tectomy, the confluence of the neuroforamen and interlaminar 

space creates the extended Kambin triangle [45]. Although 

there is currently no cadaveric or imaging study precisely illus-

trating the extent of surgical corridor expansion after facetecto-

my in endoscopic spinal surgery, the technique is postulated to 

provide a substantial increase in the surgical access area. This 

enlarged anatomical space allows for the insertion of larger 

cages, mitigating the risk of over-retraction or compression of 

the surrounded nerve root [19]. 

INCIDENCE AND POSSIBLE CAUSES OF 
NRI 

Neurological safety in endoscopic spinal operations plays 

a pivotal role, primarily attributed to the profound impact of 

NRI on postoperative clinical outcomes. Lewandrowski et al. 

[46] provided compelling evidence by demonstrating a direct 

correlation between postoperative dysesthesia and poor long-

term functional outcomes. In FE fs-TLIF, the surgical corridor 

is in proximity to the exiting nerve root, leading to the typical 

complication of ENRI. Sairyo et al. reported an incidence 

of ENRI ranging from 1.0% to 8.9% and proposed 2 possible 

mechanisms: direct stabbing injury and compression of the 

nerve root during cannula insertion due to limited operative 

space [26,27,42,47-49]. Notably, dorsal root ganglion irritation 

was also documented as a significant contributor to postopera-

tive dysesthesia [50]. Conversely, during FE fr-TLIF, the surgical 

access and cage entry point are closer to the thecal sac and 

traversing nerve root, resulting in common complications such 
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as traversing NRI, incidental dural tears, or epidural hematoma 

[16]. Kim et al. [15,16] reported the incidence of traversing NRI 

presenting with transient paresthesia ranges from 1.0% to 3.0% 

due to nerve root irritation. The occurrence of traversing root 

injury is frequently associated with the use of instruments like 

the Kerrison punch, power burr, or disc clamp [51,52]. 

CLINICAL MANIFESTATION OF NRI IN 
ENDOSCOPIC SPINAL SURGERY 

Given the elevated incidence and substantial clinical reper-

cussions of NRI, it is imperative for endoscopic spine surgeons 

to possess a thorough understanding of its clinical manifes-

tations. Drawing from the literature, the spectrum of clinical 

presentations associated with NRI encompasses radicular 

pain, limb paresthesia, dysesthesia, muscle weakness, limb 

numbness, or even drop foot [22,42,53-56]. Sairyo et al. [49,57] 

delineated that symptoms of direct stabbing injury to the nerve 

root during cannula insertion typically manifest immediately 

after the operation. Conversely, symptoms related to NRI due 

to compression by surgical instrumentation, linked to limit-

ed anatomical space, often present days after the endoscopic 

surgery. The hypothesized mechanisms include transient 

neurapraxia resulting from stabbing injury and ischemic reper-

fusion injury upon the removal of compression from the nerve 

root by the working channel [26,58,59].  

Despite the imperative of early NRI detection, differential di-

agnosis should encompass rebound pain or numbness postop-

eration, postoperative epidural hematoma, incomplete decom-

pression, recurrent herniated disc or vertebral infection [18,60]. 

Lin et al. [61] in 2022 elucidated a 5.8% incidence of rebound 

pain or numbness typically occurring within 2 weeks, of lower 

severity compared to preoperative status, and spontaneous-

ly resolving with symptomatic management. Distinguishing 

disease recurrence, which is more severe and usually requires 

reoperative treatment, is crucial and typically occurs within 3 

months [61,62]. Postoperative spinal epidural hematoma, with 

symptoms like severe surgical site pain, radiculopathy, de-

creased muscle power, or bladder dysfunction, more frequent-

ly presents within 24 hours, especially between 4 to 6 hours 

[63,64]. These nuances must be considered alongside NRI for a 

comprehensive diagnostic approach. 

MANAGEMENT OF NRI IN ENDOSCOPIC 
SPINAL SURGERY 

Clinical symptoms associated with NRI typically exhibit a 

tendency to spontaneously resolve with conservative treat-

ment. While no study has definitively outlined the efficacy of 

pharmacological treatments for NRI postendoscopic spinal 

surgery, the use of acetaminophen, nonsteroidal anti-inflam-

matory drugs, opioids, and pregabalin may be considered 

as appropriate options [57]. Additionally, recommendations 

include prolonged bed rest and the use of a back brace for sup-

port [65]. In cases where conservative treatment proves ineffec-

tive, or there is evidence of disease recurrence or postoperative 

hematoma, surgical intervention becomes a viable consider-

ation [60-62]. Surgical management may involve addressing 

persistent or recurrent compression of the nerve root, thereby 

aiming to alleviate symptoms and enhance the overall outcome 

for the patient. 

THE PREVENTIVE STRATEGIES OF NRI 
IN ENDOSCOPIC SPINAL SURGERY 

1. Preoperation 

1) Well-designed training program 
Given the steep learning curve associated with endoscopic 

spinal surgery, a meticulously designed training program is 

recommended to reduce intraoperative complications [66]. 

Training opportunities, such as medical conferences, work-

shops, and international meetings, have proven effective in 

influencing spine surgeons' clinical practices for managing 

degenerative lumbar diseases [51]. The incidence of intraop-

erative complications is believed to have a negative correlation 

with the surgeon's technique and experience [57]. Excluding 

outlier data from certain immature surgeons can significant-

ly shift the complication rate from 1.07% to 0.32% [51,67]. In 

summary, a comprehensive training program is essential to 

eliminate the risk of NRI and enhance the surgical technique of 

spinal surgeons. 

2) Complete preoperative imaging evaluation 
The restricted anatomical space in spine endoscopic surgery 

is an ongoing challenge for surgeons, as an excessively limited 

surgical corridor may elevate the risk of NRI or compression 

[49]. In certain patients, the adequate Kambin triangle might 

be absent, particularly at specific instrumented angles and 

lumbar levels [17]. Therefore, a thorough preoperative imaging 

evaluation is necessary to decide the endoscopic approach, uti-

lizing computed tomography or magnetic resonance imaging 

to reduce operative complications [26]. The use of 3D CT/MRI 

is also recommended for its ability to simultaneously evaluate 
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soft tissue and bony structures [17].  

2. Intraoperation  

1) Precision in local anesthesia during endoscopic spina operation 
In the peri-operative phase of FE-TLIF surgery using the fac-

et-sparing approach, the meticulous administration of precise 

local anesthesia is crucial to reduce the risk of ENRI [19,57,68]. 

It is essential to execute precise local anesthesia while avoiding 

infiltration of the exiting nerve root, as this could potentially 

mask the symptoms of NRI [57]. Tai et al. [37] recommend a 

specific technique involving the administration of 3 to 5 mL of 

1% lidocaine at the subcutaneous and fascia layers, followed 

by 5 to 10 mL of 1% lidocaine infiltration from the muscle lay-

er to the junction of the pedicle and SAP. This injection route 

minimizes the risk of nerve block of the exiting root. Finally, the 

needle is inserted into the ventral SAP, and 5 to 10 mL of 0.5% 

lidocaine is administered to block the sensation of the facet 

joint [37]. By employing appropriate local anesthesia, patients 

can detect any dysesthesia or paresthesia sensations during the 

operation, allowing for immediate intervention, such as stop-

ping the procedure or adjusting the surgical cannula, to help 

reduce the incidence of injury to the exiting nerve root [35,69]. 

Despite suggestions from multiple authors that endoscopic 

fusion surgery under local anesthesia decreases the incidence 

of NRI, there is currently no head-to-head research comparing 

the operation with or without local anesthesia regarding the 

incidence of NRI. 

2) Intraoperative neurophysiological monitoring 
The implementation of intraoperative neurophysiological 

monitoring has been widely discussed as a preventive measure 

against nerve damage. Various neuromonitoring tools, includ-

ing motor-evoked potential, electromyography, and somatosen-

sory-evoked potential, have been listed. In transforaminal en-

doscopic discectomy, patients monitored with sensory-evoked 

and transcranial motor-evoked potential have demonstrated 

a reduced incidence of postoperative dysesthesia through 

the repositioning of surgical instrumentation [70]. Studies by 

Nagahama et al. [71] and Abbasi et al. [72] have highlighted the 

benefits of neural monitoring using somatosensory-evoked 

potential and electromyography, respectively. Recognized as a 

crucial method to enhance neurological safety in spinal fusion 

surgery, an increasing number of endoscopic spinal surgeons 

are advocating for the incorporation of neuromonitoring during 

operations to promptly readjust surgical instrumentation and 

diminish the risk of nerve root irritation [70,73-76]. 

3) Surgical technique 
(1) The inside-out and outside-in technique for IAP resection 

In FE fr-TLIF, highlighting the importance of facet joint re-

section to establish a surgical corridor is emphasized for pro-

cedural facilitation [16,24]. For the surgical manipulation of the 

IAP, specific anatomical locations were defined by Kim's point 

and Wu's point. Kim’s point is identified as the intersection of 

the SAP tip and IAP, while Wu’s point is defined as the junction 

of the cranial vertebral lamina to IAP [16,24,77]. In 2021, Kim et 

al. [15] elucidated the differences between the inside-out and 

outside-in techniques for IAP resection. The former involves 

resection from Wu’s point to Kim’s point, whereas the latter is 

performed from Kim’s to Wu’s point. The results indicated a 

lower operative time in the outside-in group. This outcome was 

attributed to reduced paraspinal muscle dissection, limited 

intraoperative bleeding, and an improved clear surgical field, 

thereby avoiding nerve injury. Additionally, decreasing the op-

erative time to hemostasis contributes to minimizing the dura-

tion of compression on the nerve root. 

(2) Gentle surgical technique of working cannula insertion 

Given the proximity of the nerve root, it is imperative to em-

ploy a gentle approach during working cannula insertion. Soo 

et al. [78] introduced the rotate-to-retract technique in full-en-

doscopic facet-resecting lumbar decompression, involving the 

initial insertion of the one-tip working cannula's opening bevel 

surface on the cranial side, followed by rotation to the caudal 

side to prevent stabbing injury to the nerve root. Cho et al. [79] 

described a floating technique, initiating the insertion of the 

guidewire along the lateral margin of the superior one-third of 

the SAP of the lower vertebrae, progressing to the superomedial 

border of the lower pedicle. The tip of the cannula is then tilted 

to the cranial side with compression of perineural tissue. Sum-

marizing previous literature, safe working cannula insertion is 

crucial for reducing the risk of NRI, involving steps such as (1) 

inserting the open bevel of the cannula facing the nerve root 

and slowly rotating it to retract the nerve root, and (2) docking 

the guidewire and cannula over the base of the superior verte-

bral notch of the lower vertebrae initially to avoid direct injury 

to the nerve root during instrument insertion. 

(3) Adequate foraminoplasty 

During the FE fs-TLIF, foraminoplasty is performed through 

the resection of the ventral SAP to create a larger surgical cor-

ridor, preventing postoperative dysesthesia. Lee et al. [80] em-

phasized the importance of foraminoplasty in averting direct 

injury to the exiting nerve root during instrument insertion. 
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The expansion of the neural foramen aids in avoiding nerve 

root compression during the procedure [81-83]. Foramino-

plasty is recommended to commence from the base of the 

SAP rather than the tip to decrease root irritation [84]. Various 

surgical tools for foraminoplasty, including high-speed burrs, 

trephines, reamers, or laser-assisted methods, have been 

mentioned [41,85-87]. In 2018, Yang et al. [84] recommended 

trephines and reamers over burrs and lasers, citing reduced 

thermal damage. 

4) Cage glider design 

During endoscopic procedures, a specially designed cage 

glider has been introduced to mitigate the risk of NRI and en-

hance neural tissue protection. Kim et al. [16] recommended 

the Harrison cage glider for use in the FE fr-TLIF, featuring 2 

long tips that simultaneously protect the exiting and traversing 

nerve roots. In a comparative context, Sairyo [49] elucidated 

the use of a single-tip, oblique bevel cage glider during the FE 

fs-TLIF, effectively shielding the exiting nerve root from injury. 

Both special-designed glider should be placed with safe steps 

and technique just like above mentioned retraction and rota-

tion technique. 

5) The control of operative time 

Sensory nerve fibers are susceptible to compressive forces, 

leading to nerve dysfunction and dysesthesia [88]. Consider-

ing the contribution of NRI resulting from the compression of 

the working cannula during the operation, reducing operative 

time becomes a method to diminish prolonged irritation of the 

nerve root. Choi et al. [26] conducted an analysis of 20 patients 

undergoing transforaminal endoscopic discectomy and iden-

tified prolonged surgical time as a risk factor for NRI. More-

over, due to the persistent pressure of irrigation fluid during 

endoscopic surgery, reducing surgical time also plays a role in 

lowering nerve irritation associated with increased epidural 

pressure [18]. In summary, optimizing surgical time stands as 

an effective method to safeguard nerve tissues. 

CONCLUSION 

In conclusion, prioritizing meticulous surgical techniques, 

comprehensive training, and preventive measures such as 

precise local anesthesia and neuromonitoring is paramount 

in minimizing nerve root injuries during endoscopic spinal 

surgeries. These strategies collectively contribute to enhanced 

patient safety and positive postoperative outcomes in this spe-

cialized field. 
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